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The in¯uence of ¯uid ¯ow on electrode-shape change that results from electrodeposition in the
presence of a model, levelling agent is simulated and discussed. The treatment is more rigorous than
past studies in that ¯ow and concentration ®elds are recalculated as the electrode shape changes. It is
shown that uncertainties due to approximate treatments of ¯uid ¯ow may be as signi®cant as existing
discrepancies between experiment and theory. A numerical algorithm necessary to minimize errors
associated with automatic grid generation is discussed.
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1. Introduction

Additives are often included in electroplating baths
for modi®cation of the deposit structure. Such addi-
tives can also adversely in¯uence deposit purity. A
lack of a ®rm understanding of bath additives can be
troublesome for high-technology applications found
in the electronics industry, where quality control is
vital. One type of additive, known as levelling agents,
is discussed here.

In common theories, levelling agents are assumed
to inhibit deposition by an amount proportional to

their ¯ux to the electrode [1]. Levelling is therefore
assumed to occur because the additive ¯ux and thus
inhibition is greater on the `hills' of a rough surface
than the `valleys'. Tobias and coworkers have re-
viewed thoroughly previous studies of levelling agents
[2, 3]. They have also performed shape-change sim-
ulations and compared their numerical results to the
classical, experimental work [4, 5] on the role of
coumarin in nickel deposition.

More recently, Madore et al. [6, 7] presented an
extensive experimental and numerical study of the
in¯uence of coumarin on levelling during nickel de-

List of symbols

ai distance of line segment connecting points Piÿ1
and Pi (see Fig. 4(c))

bi distance of line segment connecting points Li

and Ri (see Fig. 4(c))
ca dimensionless concentration of inhibitor
cbulk bluk concentration of inhibitor �mol mÿ3�
D di�usion coe�cient (m2 sÿ1)
e parameter used for evolution of boundary

shape
F Faraday's constant (96 487 C molÿ1)
Gi distance from intersection of two neighbour

bisectors of electrode surface
gi dimensionless growth height
H height of the simulation domain
h0 the depth of the semicircular trench, also the

characteristic length scale (m)
i current density (A mÿ2)
i� dimensionless current density
ino current density without the presence of

inhibitor (A mÿ2)
ka kinetic parameter relating inhibition to

levelling-agent ¯ux (mol Aÿ1 sÿ1)
L length of the simulation domain
La dimensionless parameter � cbulkD=kaino� �
L0 dimensionless distance shown in Fig. 1

Na ¯ux of inhibitor to electrode (mol mÿ2 sÿ1)
n normal direction of the boundary
nm number of electrons transferred during

deposition
Re Reynolds number Re � Sxh20=m

ÿ �
Sc Schmidt number �m=D�
Sx shear at inlet of simulation domain
SS the south boundary shape in the process of the

boundary movement
Savg average distance of two neighbouring points

on south wall (represented by SS)
x0 the x coordinate of the starting point of the

electrode
TT the south boundary shape generated by

GridPro in solving the concentration ®eld
U dimensionless velocity vector
Dt dimensionless time step
w evaluated at a solid wall

Greek symbols
d trench depth (see Fig. 8)
m kinematic viscosity (m2 sÿ1)
w dimensionless stream function
qm density of the metal (mol mÿ3)
x dimensionless vorticity
c underrelaxation factor for vorticity at solid

wall
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position. Even though their work is the most com-
plete to date, discrepancy still exists between the
calculated and the experimental levelling powers. Part
of the discrepancy may be due to the approximate
manner (by necessity because of the electrode and cell
design) in which ¯uid ¯ow is treated in their analysis.

Progress in the development of predictive models
for levelling has been di�cult because of the need to
understand the mass-transfer (and thus ¯uid-¯ow)
phenomena as well as the chemical and electro-
chemical interactions between the levelling agent and
the electrode, reactants, and/or possible reaction in-
termediates [8]. Fluid ¯ow has been treated previ-
ously by assuming a stagnant di�usion layer, whose
thickness depends on ¯ow rate.

Jordan and Tobias [10] addressed issues concern-
ing the approximate treatments of ¯ow but only
calculate ¯ow ®elds for the initial electrode shape. A
more rigorous analysis of ¯ow requires that the ¯ow
be recalculated as the electrode shape changes. Such
problems may be di�cult because of the need to re-
generate the discretization grid at every, or at least
several, time steps. In fact, the grid-generation step is
found in the present study to be the major source of
numerical error, unless adequate procedures are fol-
lowed.

The purpose of the present communication is to
show the in¯uence of ¯uid ¯ow on numerical simu-
lations of a previously proposed model [3]. Polariza-
tion curves and impedance measurements indicate
that the model is valid when the ratio of the nickel to
coumarin ¯uxes at the electrode are large [9]. Results
indicate that changes in levelling performance with
¯ow conditions may be signi®cant. Jordan and To-
bias [10] conclude that a stagnant-di�usion layer
approximation for the ¯uid ¯ow is satisfactory. The
results presented here are largely in agreement with
this statement but also indicate that ¯ow e�ects can
introduce discrepancies between simulations and ex-
periments, depending on how data are analysed.
Implications for experimental design and for all elu-
cidation of the details of the levelling mechanism are
discussed.

2. Theory

2.1. Levelling model

We use the model of Jordan and Tobias [3]. The
development of the equations and the physical justi-
®cation can be found in their paper. In summary, the
following assumptions are used: (i) the ¯ux of level-
ling agent is mass-transfer controlled; (ii) the elec-
trode shape change is su�ciently slow that the
concentration ®elds at any instant in time are given
by a steady-state analysis (for the appropriate elec-
trode shape); (iii) the inhibitors act by blocking the
electrode surface, reducing the electrode surface area
available for electrodeposition.

According to Jordan and Tobias [3], the metal
deposition rate is given by

i � ino ÿ 1

ka
Na �1�

where ino is the current density that would be ob-
tained in the absence of inhibitor, ka is a kinetic pa-
rameter, and Na is the ¯ux of inhibitor to the
electrode given by

Na � cbulkD
@ca
@n

����
w

�2�

where the cbluk is the bulk concentration of the in-
hibitor, ca is the dimensionless concentration of in-
hibitor and n is the direction normal to the boundary.

We assume that the Wagner number is su�ciently
large that the current distribution would be uniform
in the absence of levelling agent; that is, ino is not a
function of position. Substitution of Equation 2 into
Equation 1 gives

i� � 1ÿ La
@ca
@n

����
w

�3�

Here, i� � i=ino is the dimensionless current density
and La is a parameter de®ned by

La � cbulkD
kaino

�4�

The average amount of inhibition is given by
La�@ca=@n�javg. For a su�ciently large ¯ux to the
wall, Equation 3 predicts a negative dimensionless
current, corresponding to metal dissolution. Disso-
lution does not occur for the cathodic overpotentials
used in most levelling studies. Instead, a large ¯ux of
levelling agent will correspond to a nearly zero cur-
rent density. In the present simulations, we have set
all negative i� to zero. Such an approximation is not
too unrealistic, when compared to polarization
curves obtained for nickel deposition in the presence
of coumarin [9].

After solving for the concentration ®eld, the cur-
rent density is obtained from Equation 3. The
boundary is then moved according to a dimensionless
form of Faraday's law:

Dh � ÿi�Dt �5�
In Equation 5, Dt � iDt0=�nmFh0qm� is a dimensionless
time. In the numerical method, Dt is set to be su�-
ciently small to obtain accuracy in the boundary
movement.

2.2. Initial geometry and ¯ow

Simulations have been performed for both triangular
and semicircular trenches. Results are only presented
for the semicircular case because, as Madore et al.
[6, 7] discuss, this geometry allows for a more careful
distinction between true and geometric levelling.

A ¯ow with uniform shear Sx from the west as
shown in Fig. 1 is assumed. In the presence of a shear
¯ow, the di�usion layer thickness is a function of
position. To eliminate ambiguities associated with
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setting the thickness in the vicinity of the trench, we
assume that the electrode, upon which additive is
consumed, begins at a dimensionless position L0 ÿ x0
upstream of the centre of the trench. All lengths are
made dimensionless with respect to the initial trench
height h0. The actual values used in the simulations
are L � 26; H � 4; L0 � 19, and x0 � 1, except when
Re O 0:01, where the concentration boundary layer
thickness is large. For Re � 0:01, the values H � 6
and x0 � 2 were used. Computer experiments show
that simulation results do not change with larger
values of L or H . This indicates that the simulations
on a ®nite domain adequately approximate the
semi-in®nite domain case.

At the intersections of the semicircular trench with
the ¯at boundary, small circular arcs are used for the
initial electrode contours to avoid sharp corners,
which adversely a�ect the boundary movement
algorithm. The dimensionless radius of the arc is 0.1
and it is tangent to both the ¯at surface and the
semicircular trench.

In the present study, the Schmidt number is chosen
to be Sc � m=D � 1000, typical for electrochemical
systems. The Reynolds number is given by

Re � Sxh20
m

�6�

3. Numerical method

3.1. Fluid ¯ow and concentration solution scheme

The spatial distribution of the ¯ux of additive de-
pends on the ¯uid ¯ow. Here, the ¯ow is determined
from the stream-function vorticity formulation of the
steady Navier±Stokes equations using a semidirect
method suggested by Roache [11]. In the stream-
function/vorticity formulation, the Navier±Stokes
equations reduce to

r2w � ÿx �7�

Re
@

@x
uxx� � � @

@y
uyx
ÿ �� �

� r2x �8�

in nondimensional form, with characteristic velocity
and length scales Sxh0 and h0, where w is the stream
function, which is related to ¯ow velocities through
�@w=@y� � ux; �@w=@x� � ÿuy and x is the vorticity
de®ned as x � �@uy=@x� ÿ �@ux=@y�. The concentra-
tion of levelling agent satis®es the convection±di�u-
sion equation, which is of the same form as Equation
8. The concentration ®eld is, therefore, obtained by
the same algorithm as that for vorticity transport. A
schematic diagram of the calculation domain is
shown in Fig. 1. The boundary conditions are speci-
®ed as follows. In the equations below, n and s are the
normal and tangential directions to the boundary.

An assumption of uniform shear at the upstream
boundary x � 0 corresponds to

x � ÿ1 w � 1
2y

2 ca � 1 �9�
At the ¯ow exit x � L, out¯ow conditions are speci-
®ed:

@x
@n
� 0

@2w
@n2
� 0

@ca
@n
� 0 �10�

In view of Equation 7, the second order boundary
condition for w can be replaced with an ordinary
di�erential equation at the ¯ow exit [12]

x � ÿ d
2w
ds2

�11�

The upper wall y � H moves to the right with di-
mensionless speed H :

x � @
2w
@n2

w � 1
2 H2 ca � 1 �12�

No slip conditions are imposed at the electrode:

Fig. 1. Schematic diagram of the typical computational domain. A uniform shear ¯ow enters the domain. The depth of the semicircular
trench, h0, is the characteristic length scale. All speci®ed lengths are made dimensionless with respect to h0.
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x � ÿ @
2w
@n2

w � 0 ca � 0 �13�

The boundary condition for vorticity at the solid
wall is critical since it provides the coupling between
the stream function and vorticity equations. A ®rst
order approximation to Equations 12 and 13 is used
for the second derivative. Furthermore, an under-
relaxation factor c � 0:02 for the vorticity boundary
condition at the wall is used. This under-relaxation
takes the form of

xk�1
w � cxw � �1ÿ c�xk

w �14�
where xw denotes the vorticity at the wall obtained
from Equation 12 or 13, xk�1

w is the vorticity at it-
eration level k � 1, and xk

w is the vorticity at iteration
level k.

3.2. Code validation

Two-dimensional, backward-facing step ¯uid ¯ow
was solved to validate the code. Particular attention
was paid to how a nonorthogonal grid a�ects the
prediction of the separation/reattachment point. The
calculations were performed for cases of Re (based on
the step height and mean velocity at the inlet of the
channel)=50, 75, 100, 125. The reattachment loca-
tions for various Reynolds numbers were in good
agreement with experimental data of Armaly et al.
[13] and simulation data of Cabuk et al. [4]. A solu-
tion of a mass-transfer problem for steady-state
forced convection in laminar ¯ow between two par-
allel plates was also obtained to verify the concen-
tration-solution code. Results were in good
agreement with the Leveque solution given by New-
man [15].

3.3. Grid generation and boundary movement

After solving the ¯uid ¯ow and concentration ®eld,
the inhibitor ¯ux to the boundary is obtained. The
current is then obtained from Equation 3. The fol-
lowing boundary movement algorithm was used:

(i) Initially, the south boundary is represented by
(perhaps) 400 evenly distributed points, with
straight line segments connecting the points. The
distance between these points is Savg. Every third
point of the semicircular trench with an initial
depth of h0 is shown in Fig. 2.

(ii) Using the distribution of points on the electrode
(shape A), a grid is generated using GridPro [16]
for the solution of the ¯ow and concentration
®elds. In order to generate a nearly orthogonal
grid (desirable for the ¯ow and concentration
solvers), the grid generation software relocates
the points to new positions (shape B), producing
an undesirable distortion in the prescribed elec-
trode shape. The initial mesh and an intermedi-
ate mesh so generated are shown in Fig. 3. The
e�ect on the ¯ow or concentration solutions of
this distortion was found to be negligible. The

cumulative e�ect of this distortion after several
grid generation steps (note that each new ¯ow
solution requires a new grid), however, is no
longer negligible compared to the boundary
growth. Hence, after computing the ¯ow/con-
centration solutions on shape B, the actual
boundary movement is implemented on shape A.
In this fashion the e�ect of boundary distortion
due to the grid generation process is limited to
the computation of the ¯ow and concentration
®elds.

(iii) The boundary representations as shown in
Fig. 4(a) of the electrode for ¯ow/concentration
solution (shape TT) and the growth process
(shape SS) are di�erent. Consequently the cur-
rent densities computed on shape TT must be
transferred to shape SS. The algorithm for doing
this is described below. Consider a point B with
neighbours A and C on SS and point F with
neighbours E and G on TT as shown in Fig. 4(a).
For an arbitrary point B on SS, the closest point

Fig. 2. In a typical simulation, the south boundary is represented
by 400 evenly distributed points. Every third point is shown here.

Fig. 3. Computational grids generated by GridPro for use in the
¯uid ¯ow and concentration-®eld calculations. (a) Initial mesh.
(b) An intermediate grid after shape change.
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F on TT is found. The angles �FBE and �GBF
are computed. If �FBE is greater (less) than
�GBF, the current density i�jB at B is determined
as a weighted average of current densities at
points F and E (F and G) on TT:

i�jB �
1

BF� BE
i�jF � BE� i�jE � BF
ÿ � �15�

Using this algorithm, the current density on the
entire shape TT is transferred to SS.

(iv) At the end of a growth step the points along SS
are in general no longer evenly spaced. Succes-
sive steps may lead to points that are either too
close or too far apart. An algorithm is used to
add or remove points to correct this situation.
Suppose that SS is described by points
P iÿ1; P i; P i�1, and P i�2, shown on Fig. 4(b). If
� P i�2P i�1P i is greater than 183

� and the segment
length P iP i�1 > Savg=3, then an additional point
P i� is added between P i�1 and P i. A segment
length of Savg=3 to trigger addition of points was
found to adequately satisfy the needs of accu-
racy. The current densities i� associated with the

newly formed segments P i�P i�1 and P iP i� are
taken to be the same as the current density as-
sociated with P iP i�1. A check is made on seg-
ment P i�2P i�1 next and so on. Wherever
necessary, new points are added. To correct for
points being too close, if a segment length
P iP i�1 < Savg=6, then either point P i or P i�1 is
removed. If P i is removed, the current density
associated with P iÿ1 and P i�1 is obtained by

i� jP iÿ1P i�1�
1

P iÿ1P i � P iP i�1
�

� i� jP iÿ1P i � P iÿ1P i � i� jP iP i�1 � P iP i�1
ÿ � �16�

The point addition and removal processes are
repeated recursively until no new points need to
be added or removed. The addition and removal
algorithms are always initiated at the lowest/
highest points on the electrode in order to pre-
serve the depth of the trench.

(v) The growth process implemented on shape SS
must attempt to ensure that the quantity of new
material deposited is conserved. Consider a
point P i on the initial shape SS with neighbours

Fig. 4. (a) Schematic diagram to describe the process of transferring calculated current density from the computational grid to the grid
used for shape change calculations. (b) Schematic diagram of the method to add and remove points in the process of boundary growth.
(c) Schematic diagram of boundary growth that attempts to conserve quantity of new material deposited.
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P iÿ2; P iÿ1; P i�1, and P i�2 as shown in Fig. 4(c)
(see also Fig. 2). A bisector P iP 0i of � P i�1P iP iÿ1 is
constructed. The lengths of line segments con-
necting P iÿ1 and P i are denoted by ai. The
growth of a particular boundary segment is as-
sumed to be con®ned to a region between two
neighbouring bisectors. Points Li and Ri on the
bisectors on each side of ai are located such that
the line segment bi connecting points Li and Ri is
parallel to ai and the normal distance between ai

and bi is the growth height gi:

gi � Dtmini�ji ai

�ai � bi�=2 �17�

where Dtmin is determined from

Dtmin � e
max�i�ji� �18�

where e must be less than 0.01 and less than
0:1�min Gi�. Here Gi is the normal distance from
the intersection point of two neighbouring bi-
sectors to the electrode surface as shown in Fig.
4(c). Thus ideally one would like the new growth
shape to be given by line segments Liÿ1Riÿ1, LiRi,
Li�1Ri�1 and so on. Since this surface is not
continuous, a new surface shown by the dotted
line in Fig. 4(c) is used. Thus each point P 0i de-
®ning the new shape is at the midpoint of the
pair of points Ri and Li�1.

(vi) Return to step (iv) and repeat the growth process
until the product of max�i�� and the cumulative
step size

P
Dt reaches 10% of the trench depth.

Numerical experiments show that solving the
¯uid ¯ow and concentration ®elds once after
every additional deposition depth equal to 10%
of the initial trench depth is adequate, since
changes in current density are minor for changes
in shape due to depositions less than this value.

(vii) Wherever an additional 10% deposition level is
reached, the boundary points are evenly redis-
tributed so that the distance between them is
Savg. This is a procedure similar to that of Ma-
dore et al. [6, 7] and Jordan and Tobias [3]. The
redistribution starts from the lowest/highest
points on the electrode. This eliminates any
nonsmooth behaviour with length scales smaller
than Savg as well as ensures that the total number
of points representing the boundary is stable. At
this stage one returns to step (ii).

4. Results and discussion

It is important to correlate ¯ow rate to the ¯ux near
the electrode `scratch'. Figure 5 shows the average,
initial dimensionless ¯ux between the dimensionless
positions x � 16 and 22 as a function of the Rey-
nolds number. Of course, as deposition progresses,
the average ¯ux would change due to changes in the
electrode shape. As a possible measure of the amount
of change to be expected, the dashed line gives the

average dimensionless ¯ux obtained for a ¯at sur-
face.

Figure 6 shows simulated electrode pro®les for
three Reynolds numbers and two values of inhibition
constant La. As is most readily evident for the Re � 1
case, as La increases for a given ¯ow rate, the amount
of levelling increases. In the range of ¯ow rates of the
present study, for a given La, the levelling power in-
creases with Re because the average ¯ux increases.
The increase in average ¯ux leads to a larger variation
in the current density (see Equation 3). The curves
shown for the lower Re are nearly symmetric, while
the Re � 1 results exhibit mild asymmetry due to the
¯uid ¯ow.

Figure 7 shows a summary of some of the simu-
lation results. In this Figure davg is the average of the
deposit thicknesses at x � 16 and 22 as shown in
Fig. 8. The quantity davg is plotted against the trench
depth dt in Fig. 7. It is shown that the levelling rate,
that is, the rate of decrease in dt, increases with La and
with Re. For reference, the experimental results of
Madore and Landolt [7] for geometric levelling are
shown. The simulation of geometric levelling indi-
cates that smoothing of the sharp corners near the
trench has no signi®cant e�ect on the numerical re-
sults. Furthermore, the ability to accurately simulate
geometric levelling provided a means of determining
a proper time step size.

Detailed simulation results for Re � 0:1 and
La � 0:2 are shown in Fig. 9. In Fig. 9(a), the spatial
distribution of the ¯ux of levelling agent is shown for
various dimensionless times. The electrode shape at
each corresponding time is shown in Fig. 9(b). For
the initial electrode shape, the ¯ux distribution shows
some asymmetry. This implies that the initial growth
is larger at the leading edge of the trench. However,
as the electrode shape changes, the ¯ux distribution
becomes nearly symmetric. This is perhaps a sur-
prising result because Pe � 100, indicating that the
¯ux of levelling agent is convectively dominated.

Fig. 5. Variation of dimensionless average ¯ux of levelling agent to
the electrode between x � 16 and x � 22 as a function of Reynolds
number. The solid lines (±±±±) are for the initial electrode shape
(Fig. 1) and the dashed lines (± ± ± ±) are for a ¯at electrode.
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Figure 10 shows detailed simulation results for
Re � 1 and La � 0:4. Clearly, a signi®cant amount of
levelling is predicted. The asymmetries in the ¯ux are
more signi®cant in this case. Furthermore, the
asymmetries persist for longer times; thus, the re-

Fig. 6. Evolution of electrode shape for La � 0:2 and 0.4 and for Reynolds numbers of 0.01, 0.1 and 1.0.

Fig. 7. Simulated depth of the trench as a function of the average
deposit thickness davg. Key: (ÐÐÐ) geometric levelling; (- - - - -)
Re � 0:01; La � 0:2; (-�-�-�-�-) Re � 0:01;La � 0:4; (� � � � � � �) Re � 0:1;
La � 0:2; (± ± ± ±) Re � 0:1;La � 0:4; (-��-��-��-) Re � 1:0; La � 0:2;
(ÐmÐ) Re � 1:0; La � 0:4: Experimental data (m) of Madore et al.
[6, 7] for geometric levelling of semicircular trench are also shown.

Fig. 8. A schematic illustrating the de®nitions of dt and davg.

Fig. 9. Evolution of electrode shape and the corresponding ¯ux in
the mouth of the trench for Re � 0:1 and La � 0:2. davg � (±±±±) 0,
(± ± ± ±) 0.19, (± á ± á ± á) 0.37, (¼¼) 0.55 and (± áá ± áá ± áá) 0.73.
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sulting pro®le is slightly asymmetric. Nevertheless,
the asymmetry is weak even though Pe � 1000.

Previous numerical studies use a stagnant di�usion
layer approximation to treat the ¯ow. As long as the
assumed size of the di�usion layer is very large
compared to the scratch dimension, the shape change
would only depend on the average levelling power
La�@ca=@n� javg. When convective ¯ow is calculated,
the shape change should depend on the average lev-
elling power as well as the Reynolds number. Fig-
ure 11 shows a comparison of the simulated electrode
shape for the same levelling powers, but three dif-
ferent Re. The pure di�usion case is perfectly sym-

metric as expected. Clearly, the electrode shapes are
nearly the same for this case and would probably be
indistinguishable experimentally. Figure 12 shows
another example for a larger average levelling power.
Here di�erences are much more signi®cant and would
probably be seen experimentally.

Figure 13 shows a summary of simulation results
presented in the same manner as that of Jordan and
Tobias [3]. A decrease in dt at very high levelling
powers in not seen in the present study because the
di�usion layer is never su�ciently thin to follow the
contour of the scratch. For low average levelling
powers, the decrease in dt is small, as expected [6, 7].
When the average levelling power increases, signi®-
cant di�erences in the curves are apparent. Interest-
ingly, the Re � 1 and 0.1 �Pe � 1000 and 100) curves
lie on top of one another, presumably because both

Fig. 10. The evolution of electrode shape and the corresponding
¯ux in the mouth of the trench for Re � 1:0 and La � 0:4.
davg � (ÐÐ) 0, (± ± ± ±) 0.04, (± á ± á ± á) 0.08, (� � � � � �) 0.12 and
(± áá ± áá ± áá) 0.17.

Fig. 11. A comparison of electrode shapes for Re � 0 ( ±±±±), 0.01
(± ± ± ±) and 1.0 (± á ± á ± á). In all cases, the same average levelling
power is used: La�@ca=@n� javg� 0:15: The pro®les are presented for
the time at which davg � 0:72.

Fig. 12. A comparison of electrode shapes for Re � 0 (±±±±) 0.01
(± ± ± ±) and 1.0 (¼¼). In all cases, the same average levelling
power is used: La�@ca=@n�javg (� 0:62 for Re � 0 and 1 and 0:61
for Re � 0:01). The pro®les are presented for the time at which
davg � 0:25.

Fig. 13. The dimensionless decrease in trench depth for davg � 0:1
as a function of the average levelling power La�@ca=@n� javg for
various Reynolds numbers, Re: (± ±m± ±) 1, (± á ± d ± á ± á) 0.1,
(±áá j ±áá) 0.01 and (±±b±±) 0.
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cases correspond to an in®nite Pe number limit. The
Re � 0:01 and 0 cases show considerable di�erences.

For example, for an average levelling power of 0.7,
1ÿ dt varies between 0.15 and 0.39. Such discrepan-
cies are as great as the discrepancies between experi-
ments of Kruglikov et al. [4, 5] and the simulations of
Jordan and Tobias and Dukovic and Tobias [2, 3].
Likewise, similar discrepancies are found in the study
of Madore et al. [6, 7]. Apparently, if this plot is the
measure of the e�cacy of a detailed model for the
electrode kinetics (such as Equation 3) in performing
levelling studies, a more careful analysis of the ¯uid
¯ow e�ects may be required. No attempt is made here
to perform such an analysis on the rotating disc
measurements of the previous studies, where the ¯ow
near the scratch is not easy to analyse. Furthermore,
the ¯ow to a disc is impinging instead of a shear ¯ow
assumed here. Further work could be improved by
performing studies in a ¯ow channel, where the ¯ow
can be rigorously analysed.

5. Conclusions

Employment of a stagnant di�usion layer approxi-
mation in models of levelling agents may lead to
shape changes that qualitatively appear reasonable
when compared to more rigorous treatments of ¯ow.
However, the ratio of the amount of material de-
posited at the centre of the `scratch' to the amount
deposited outside the scratch is commonly used as a
means of quantitative comparison of simulation and
experiment. The present study indicates that such a
measure depends on average levelling power as well
as the details of the ¯ow ®elds. The variations due to

¯ow e�ects can be appreciable, especially for large
levelling powers.
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